

Electrifying Pupil Transportation: Successful Transition Planning

Jim Jensen
Washington Association for Pupil Transportation
June 2024

Green Transportation Program

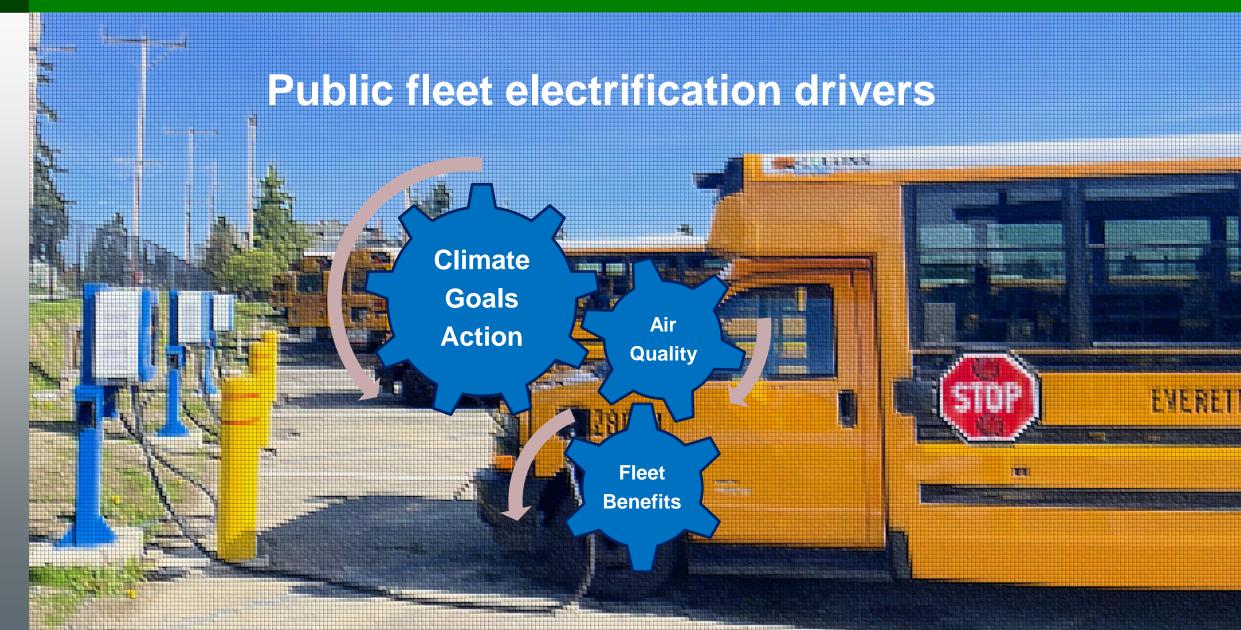
Legislative directive to the WSU Energy Program

(HB 2042–Advancing Green Transportation)

Mission: establish and administer a technical assistance and education program for public agencies on the use of alternative fuels and vehicles.

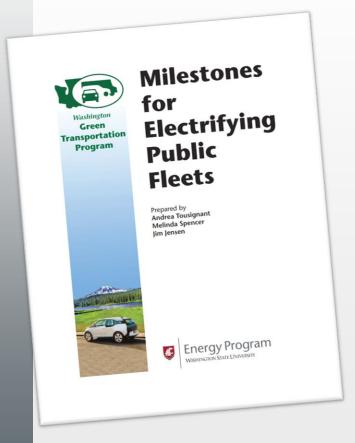
QR Code to ESB Hub

Subscribe for news and announcements www.energy.wsu.edu/GreenTransportationProgram
Request information via email greentransportation@energy.wsu.edu



GTP Delivers "Next Step" Assistance

- ✓ Education: website, studies, resources, publications, and more
- ✓ Alt Fuel-Vehicle Technical Assistance Group (AFV-TAG)
- ✓ Webinars: BEVs and infrastructure, renewable hydrogen series
- ✓ Events: infrastructure field trips and ride-and-drives
- ✓ Coordination: EV Council, WSDOT, Commerce, Ecology, JTC
- ✓ Technical assistance, all public fleets: cities, counties, tribes, transit agencies, school districts, ports, public utilities (800+)
 - Presentations to teams and decision-makers
 - Research answering questions about vehicles and charging
 - Analysis vehicle TCO comparisons, infrastructure needs
 - Grant writing support
 - Introductions and connections (utilities, vendors, consultants, etc.)


Legislature passes HB 1368 to electrify school buses

- Expands Ecology's Zero-Emission School Bus Grant Program, prioritizing grants to districts serving overburdened and disadvantaged communities and for the oldest buses first
- Requires new buses to be zero-emission after a determination that the Total Cost of Ownership is lower than diesel
- Establishes exemptions
- Requires OSPI do a survey of districts this year

A typical fleet EV transition

Take the next step!

Internal Planning & Assessment

Coordinate with External Partners

Action & Funding Phase

- 1. Assemble your team and set goals
- 2. Identify EV candidates
- 3. Calculate electric loads
- 4. Facility planning and capacity assessment
- 5. Engage utility
- 6. Engage vendors and contractors
- 7. Finalize plans
- 8. Procurement
- 9. Installation
- 10. Implementation

1. Assemble your team and set goals

Which of these is available and most critical:

- Transportation supervisors/fleet manager
- Facility managers
- Electrician
- Energy/sustainability managers (RCMs)
- Planners
- Drivers (union)
- Finance and procurement
- Parking enforcement or public safety
- Decision-makers-superintendent, board rep

2. Identify EV candidates for school buses

Ty	ype C Models	Capacity			
Bus Name	Bus Manufacturer	Range (miles)	Battery Capacity (kWh)		
Vision Electric	Bluebird	130	155		
Electric CE Series	IC Bus	135-200	210-315		
Jouley	Proterra/Thomasbuilt Buses	138	226		
LionC	Lion Electric Co	155	126-168		

Considerations for choosing the right vehicles for the first ones:

- Routes
- Daily miles
- Established dealer relationship
- Compatible with charging

Routes & Schedules

When is the vehicle on the road?

When to charge it?

How far does it go?

How much charge does it need?

Does it come back to campus by the end of the day?

Will it be charged overnight?

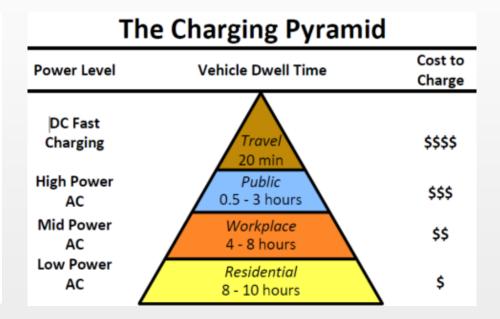
Example Type C Electric School Bus

	Blue Bird	Lion	Thomas	IC Bus/Navistar	BYD
MODEL	BLUE BIRD VISION	LIONC	SAF-T-LINER C2 JOULEY	IC CE SERIES ELECTRIC BUS/ PB10E	TYPE C
Price range	\$326,810-\$365,000°	\$338,253-\$422,302 ^b	\$335,287-\$437,000°	\$347,870-\$364,123 ^d	Not available
Length (L)/width (W)/height (H)	L: Max 477" W: 96" H: 123"	L: 473" W: 96-102" H: 122"	L: 396" W: 96" H: 144"	L: 303.9"/474.9" W: 96" H: 123"	L: 435"/462" W: 102" H: 132.9"
Passenger capacity	77	77	81	29-72	78
Charger connector	L2: J1772 DCFC: CCS1	L2: J1772 DCFC: CCS1	DCFC: CCS1	L2: J1772 DCFC: CCS1	L2: J1772 DCFC: CCS1
Capable of bidirec- tional charging	Yes	Yes	Optional	Yes	Optional
Battery size (kWh)	155	126/168	226	210/315	255.5
Range (miles)	120	100/125	138	135/210	155
Battery thermal management	Liquid cooled	Liquid cooled	Set to maintain 70°F battery temp	Set to maintain 70°F battery temp	Water cooling
Recharge time	L2 (19.2 kW): 8 hours DCFC (60 kW): 3 hours	L2 (19.2 kW): 6.5-11 hours DCFC: (24 kW) 5-9 hours or (50 kW) 2.5-4.25 hours	DCFC: (25 kW) 8.25 hours or (60 kW) 3.4 hours	L2 (19.2 kW); 8 hours DCFC (60 kW); 3 hours	L2 (20 kW max): 12.5-13 hours DCFC (150 kW): 1.5-2 hours

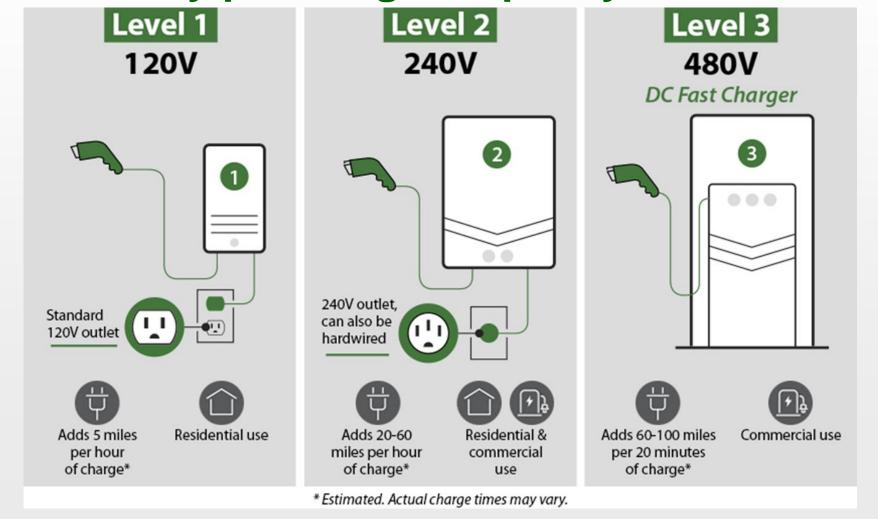
Elements of electric bus

3. Calculate electric loads

		Battery								Time to	Time to		Electricity
Vehicle	Range	Capacity	L2	L3	Days on	Miles	Hours		kWh	charge	charge DC	Demand	Charge
Name	(miles)	(kWh)	(ACkW)	(DCkW)	road/month	per day	on Road	kWh/mile	used	AC	60kW	Charge \$/kW	\$/kWh
IC Bus													
Type C	200	210	19.2	60	20 (M-F)	80	4	1.05	133.6	6.96	2.23	10	0.12


	Monthly	Monthly		
	Demand	Demand		
Monthly	Cost low	Cost High	Monthly Bill	Monthly Bill
kWh	power	power	L2 Charging	DCFC
2672	192	600	512.64	920.64

3. Calculate electric loads


Charging Level	Power Output Charging Session	Small EV (40 kWh battery)	Medium EV (65 kWh battery)	Large EV (90 kWh battery)
Level 1	2.3 kW	11h 36m	18h 50m	26h 05m
Level 2	7.4 kW	3h 36m	5h 51m	8h 06m
Level 2	11 kW	2h 25m	3h 56m	5h 27m
Level 2	22 kW	1h 08m	1h 45m	2h 27m
DCFC	50 kW	32 min	52 min	1h 12m
DCFC	100 kW	16 min	26 min	36 min
DCFC	150 kW	-	17 min	24 min
DCFC	240 kW	-	11 min	15 min
DCFC	300 kW	-	8 min	11 min

Source: EVBox

4. Facility planning & capacity assessment

4. Facility planning & capacity assessment

Cost element	Study	Level 2	DCFC			
			50 kW	150 kW	350 kW	800 kW
Equipment cost	ICCT (2019)	\$3,127	\$28,401	\$75,000	\$140,000	
	NREL (2020)	\$3,500	\$38,000	\$90,000		
	RMI (2020)	\$2,500 - \$4,900	\$20,000 - \$35,800	\$75,600 - \$100,000	\$128,000 - \$150,000	
	EDF & GNA (2021)			\$136,540		\$481,299
Installation cost	ICCT (2019)	\$2,837 - \$4,148	\$17,692 - \$45,506	\$18,577 - \$47,781	\$25,654 - \$65,984	
	NREL (2020)	\$2,500	\$20,000	\$60,000		
	RMI (2020)	\$7,000	\$62,700	\$75,500	\$138,200	
	EDF & GNA (2021)			\$35,000		\$175,000

Image Credit - ICF

4. Facility planning & capacity assessment

This an opportunity to plan for or think about Public, Fleet and Workplace charging

- Discuss campus characteristics
- Discuss building characteristics
- Allowable public safety parking more than 4 hours

Hardware

L2 or DCFC

At Headquarters or on-route

What vehicle battery size

<u>Network</u>

Telematics/GPS data

Capture mileage/fleet data

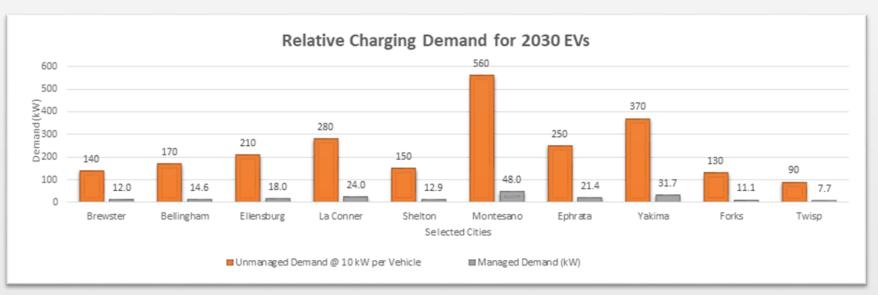
Scale it – capture on the EVSE (charger)

Or need reporting software/network for electricity used/re-fueling

Dual-port wall-mount unit attached to a building column. Shows L2 J1772 plug. Dept. of Commerce, Olympia (Photo: WSU)

Single dual-port charging unit positioned to serve multiple vehicle parking spots.

(Photo: Dept. of Ecology)



Single pedestal EVSE serving three spaces including an ADA-compliant space. WSDOT, Shoreline (Photo: WSU)

Consider Charging Hardware and Network Options

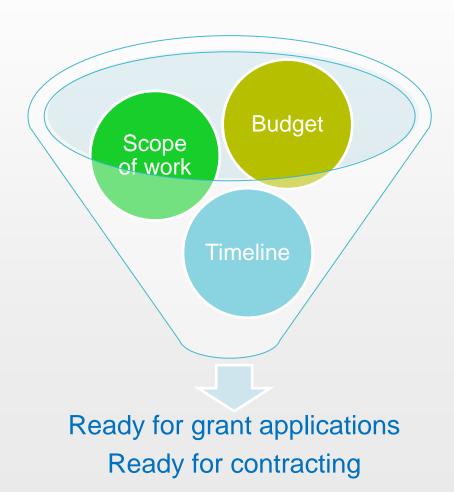
- Specifications
- Vehicle to charger ratios
- Non-network vs network charging
- Plan load management strategies

Assumptions: 1:1 V:P ratio, 10kW/EVSE, 14-hour charge window

5. Engage utility

- Contact the utility with preliminary plans
- They may offer an EV specialist who can address your technical questions
- They may confirm electrical usage on site, and excess capacity available
- Offer tools data, and incentives

6. Engage vendors & contractors


- Combine electrical planning with construction
- Check if any upgrades have to happen off property (e.g. transformers)
- Connect with EVSE contractors to understand the equipment and if there are any specifications to know! (e.g. charger chord length, power factor)

Daimler Electric Island

7. Finalize plans

8. Procurement

- Invest in energy conservation and efficiency
- Make EVs the default choice
- Use a robust total cost of ownership (TCO) model
- Consider incorporating a Social Cost of Carbon figure in the TCO comparison
- Address the budget dilemmas with EVs (capital vs O&M totals)
- Choose drop-in renewable fuels or alt fuels when electric doesn't compute
- Take advantage of the IRS rules for elective and direct pay incentives

STATE CONTRACT https://apps.des.wa.gov/CARS/ContractVehicleMenu.aspx
SOURCEWELL - https://driveevfleets.org/electric-vehicles/?fuel-type=battery-electric

8. Procurement

We are expecting roughly \$40 million in Washington State funding to be available in the next 18 months!

WA Department of Ecology

WA Department of Commerce

9. Installation

- Have planning and procurement documents ready to go
- Check compliance with building codes
- Make sure to have electrical and building permits

Lion Electric Bus

10. Implementation

- CELEBRATE!
- Have a ribbon cutting
- Train drivers
- Track driving habits that increase or decrease efficiency
- Plan ahead for cold conditions
- Start or keep planning for the next phase

Montgomery County Public School Bus Fleet

Green Transportation Program

Electrifying Student Transportation

Washington's school districts are facing a gamechanging opportunity to add electric school buses (ESBs) to their fleets. The Green Transportation Program (GTP) offers resources and guidance to help districts decide if this is the right time to pursue available funding.

Why electrify?

Health and environmental benefits of replacing diesel-fueled school buses with ESBs are clear. Diesel exhaust, a known carcinogen, is linked to serious physical health issues and cognitive development impacts. Students from low-income families are disproportionately exposed to the dangers of diesel exhaust pollution. Electrifying school bus fleets can help address these health and environmental concerns, especially in overburdened communities. Studies on health impacts from fossil-fueled buses are included in Webcasts and Case Studies.

Get funding

We provide details about funding opportunities and incentives to support ESB and charging equipment purchases in <u>Funding Opportunities</u>.

Questions? GTP can help!

We invite school districts to contact us at greentransportation@energy.wsu.edu to discuss projects and challenges specific to your district. In our flyer Successful Deployment of Electric School Buses, we describe the types of questions we can answer for you, including:

- Calculating charging needs and determining where to install EV charging stations.
- Which bus routes to electrify first.
- · ESB models that could work well for your district.
- Working with your electric utility to assess electrical capacity and install charging equipment.

Text/HTML

Green Transportation Program
Home

Clean Fuel Programs

Alt Fuel-Vehicles Technical
Assistance Group

EV Charging Resources

Funding Opportunities

Electrifying Student
Transportation

The Green Transportation Program delivers "Next Step" Assistance

Search

WSU Green Transportation Program

Email Requests

greentransportation@energy.wsu.edu

This Year With RE+

Green Transportation Summit & Expo 2024

August 20-22, Tacoma Convention Center Use our discount code: 24CP-WSU, 30% off

